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Nomenclature

Model wing span

frequency, Hz

Nyquist frequency

Low-pass frequency

Spectral density function

Helicity, defined as scalar product of local velocity and vorticity vectors

Reference helicity, based on freestream velocity and wing span

Freestream velocity

Streamwise component of local velocity, positive toward downstream

Averaged streamwise component of local velocity

Streamwise component of local root-mean-square velocity

Spanwise component of local velocity, positive toward right as viewing

upstream

Spanwise component of local root-mean-square velocity

Vertical component of local velocity, positive upward

Vertical component of local root-mean-square velocity

Model streamwise coordinate along body axis, positive toward rear with origin

at body nose-tip.

Model spanwise coordinate, positive toward left as viewing upstream

Difference of Y position in vortex trajectory

Local spanwise coordinate, positive toward left as viewing upstream with origin
at centerline on the wing surface

Model vertical coordinate, positive upward

Difference of Z position in vortex trajectory

Local vertical coordinate, positive upward



Greek

(X Model angle of attack

COo

Vortl"city

Reference vorticity, based on freestream velocity and wing span

HW

LDV

LHS

RHS

RMS

Hot-wire

Laser Doppler Velocimeter

Left-hand-side, viewing upstream

Right-hand-side, viewing upstream

Root-mean-square



A problemof currentinterestin computationalaerodynamicsis theprediction of

unsteadyvortex flows overaircraft at high anglesof attack.A six-monthexperimental

effort was conductedat the John J. Harper Wind Tunnel to acquire qualitative and

quantitative information on the unsteady vortex flow over a generic wing-body

configurationat high anglesof attack.A double-deltaflat-plate wing with bevelededges

wascombinedwith aslendersharp-nosedbody-of-revolutionfuselageto form thegeneric

configuration.This configurationproducesa strongattachedleadingedgevortex on the

wing, as well as sharply-peakedflow velocity spectraabovethe wing. While it thus
producesflows with severalwell-defined featuresof current interest, the model was

designedfor efficiency of representationin computationalcodes.A moderatenumberof

surfacepressureportsandtwo unsteadypressuresensorswereusedto studythepressure

distributionoverthewing andbodysurfaceat highanglesof attack;theunsteadypressure

sensingdid not succeedbecauseof inadequatesignal-to-noiseratio_A pulsedcoppervapor

lasersheetwasusedto visualizethevortex flow over themodel, andvortex trajectories,

burst locations,mutualinductionof vortex systemsfrom theforebody,strake,andwing,

werequantified.LaserDopplervelocimetrywasusedto quantify all 3 componentsof the
time-averagedvelocity in 3dataplanesperpendicularto thefreestreamdirection.Statistics

of the instantaneousvelocity wereusedto study intermittencyandfluctuation intensity.

Hot-f"timanemometrywasusedto studythefluctuationenergycontentin thevelocity field,
andthespectraof thesefluctuations.In addition,a successfulattemptwasmadeto measure

velocity spectra,componentby component,using laser velocimetry, and thesewere

comparedwith spectrameasuredbyhot-f'dmanemometryat severallocations.



DEFINITION OF THE UNSTEADY VORTEX FLOW

OVER A WING/BODY CONFIGURATION

S.G Liou 1, B. deBry 2, J. Lenakos 3, J. Caplin 2, N.M. Komerath 4
School of Aerospace Engineering
Georgia Institute of Technology

Atlanta, GA 30332-0150.

1. INTRODUCTION

At high angles of attack the highly swept leading edge extensions, the sharp wing

leading edge, and slender fuselage forebodies of modern high-speed aircraft generate

vortices which produce substantial increases in lift and may be used to perform some

maneuvers. High-Speed Civil Transport designs, on the other hand, may expect to

encounter the high-(x environment as well, because of the need to reduce landing speed.

Many modern designs have control surfaces set away from the longitudinal plane of

symmetry, so that these surfaces are immersed, partly or totally, in the vortex flow coming

off the wings under such flight conditions. This has some significant benefits, but also

appears to cause some severe problems.

Over the past two years, the Georgia Institute of Technology has conducted detailed

studies on F-15 modelsl, 2 to define the high angle of attack flow environment of the

vertical tails. Measurements and data found in the literature showed that the flow field

develops sharply-peaked spectra in the vicinity of the vertical tails. The dominant

frequency showed accurate Strouhal scaling to the observed oscillation frequencies on the

full-scale vertical tails. Similar phenomena were also observed above the vertical tails of

the F-18 outside the severe burst-vortex buffeting region. These results led to the

preliminary testing of a generic, highly swept wing/body configuration 2. It was found that

this configuration exhibits similar sharp-peaked spectra in the region where the vertical tails

would be mounted. This proved that the occurrence of such sharp peak spectra are fluid

dynamic in origin and do not depend on such geometric details as inlets, or on feedback

from the tails.

1: Post-Doctoral Fellow

2: Graduate Research Assistant

3: Undergraduate Student

4: Associate Professor



Computationof unsteady high-0_ flows over entire configurations is a current

objective of computational fluid dynarnics3, 4. Measurements cannot be obtained at all

possible flight conditions, so that computer simulations are needed to fill in the gaps and

enable first-principles-based prediction at the preliminary design stage. However, before

confident use of these numerical tools can be made, the computer codes must be fine tuned

and validated. Validation requires muld-faceted data sets, so that the causes of problems

can be tracked down conclusively. Thus, there arose a separate need for high-quality,

detailed data to prove the predictions of the computational codes. These considerations

provided motivation for the present research to obtain quantitative data on vortex behavior

and velocity field over a configuration amenable to efficient computation. It also allows for

the study of the development of quasi-periodic unsteadiness in the flow above a swept-

wing configuration at high angles of attack.

It is quite expensive to run computational codes which can resolve unsteady

velocity fluctuations and explore their nature in the high angle-of-attack flowfield. If such

codes must be validated using data from realistic aircraft configurations, a great deal of

resources must be devoted to accurate modeling of the detailed geometry of such

configurations. These detract from resources which can otherwise be devoted to resolving

flow features accurately. Thus we used a configuration which would produce the flow

features of interest, yet requires minimal computational resources. Happily, such a

configuration is also less expensive and more efficient to build, instrument, and use for

flowfield measurements.

2. FACILITY

All the tests were performed in John J. Harper Wind Tunnel at Georgia Tech, which is a

closed loop tunnel with a seven by nine foot test section. The tunnel is powered by a 600

hp motor, which can generate continuous air flow with speed up to 175 mph. Honeycomb

and fine-mesh screen were installed in the settling chamber to assure good flow quality. A

variety of flow diagnostic systems are available in the facility, which make multi-faceted

study of the subject possible. A diagram of the facility is shown in Fig. 2.1.

2



3. EXPERIMENTAL PROCEDURES

3ol Model Construction

The design of the generic wing/body model was determined based on several reasons

listed below:

1) The shape originated with a small wooden model with flat-plate aluminum wings tested a

few years ago 5 at the 42" low turbulence tunnel at the School ot_ Aerospace Engineering.

This shape was chosen because we had already obtained preliminary data on it and

confirmed the existence of quasi-periodic velocity fluctuations above it, and because it was

representative of a "generic" supersonic civil transport. The double-swept delta wing,

consisting of a sharply-swept strake extension in front of the delta wing, was chosen. The

strake will generate a strong attached vortex, which can be visualized for a considerable

distance over the wing and is likely to exhibit vortex burst phenomena. A large leading

edge vortex structure will be produced by the delta wing. Previous measurements have

shown that such configurations will generate quasi-periodic velocity fluctuations in the

downstream portion of the wing flowfield, as well as near the vertical tail. Therefore, this

simplified model will provide a comparison toward a better understanding of this unsteady

vortex flowfield.

2) More efficient computation can be achieved with simple configuration because of the

reduction of resources devoted to complex modeling. It is more suitable at the initial

development and validation stage of the code.

The generic wing/body model, scaled up 1.5 times from the small wooden model,

was built at the machine shop at the School of Aerospace Engineering. Fig3.1 shows the

geometry and dimensions of the model. The wing section was made of steel plate for

rigidity at high angle of attack. The upper surface of the wing is flat with the lower surface

being beveled. The thickness of the wing is 0.25 inch. This leaves a space of 0.125 inch

between upper and lower surface, which allows the installation of 1/16" stainless steel

tubes and Kulite pressure transducers for static and dynamic pressure measurements.

Aluminum pipe was used for the body with forebody and aft-body being turned from wood

and hollowed out inside. The wing surface was painted flat black to reduce laser

scattering, and a fluorescent orange strip was added along the edges to make the model

outline visible in a darkened test section. The model can also be dismantled and tested as

wing-alone, or body-alone, besides the full wing-body.

The model was mounted on a sliding platform through a supporting mechanism,

(camera tripod head) which allowed adjustment of pitch, roll, and yaw angles. The



platform rodeon two rails fixed on the tunnel floor, and was moved using a lead screw

driven by a computer-controlled stepper motor. The traverse mechanism was calibrated.

Fig.3.2 shows a sketch of the model inside the test section.

3.2 Onset Velocity Field

Hot-wire anemometry was used to measure the turbulence intensity at several locations

upstream of the model location in the test section. Smoke wires used for the flow

visualization were also installed, so that their effects on the flow field could be checked.

Measurements were made at two freestream speeds (20 ft/sec and 50 ft/sec), at which most

of the later tests were conducted. Results showed that the turbulent intensity in both cases

was in the range of 0.1 to 0.2%.

3.3 Laser Sheet Flow Visualization

Flow visualization was performed first in order to determine the vortex trajectory

and understand the flow field features. The results were then used to help choose the

measuring planes and locations for the subsequent tests. During the flow visualization, the

model was moved at constant speed through the light sheet. Smoke patterns over the

model surface were recorded using a video camera fixed downstream of the test section,

inside the tunnel. Tests were repeated for several angles of attack (10,15,20,25 deg.).

Freestream speed was chosen to be 20 ft/sec based on the picture quality from the video

camera and the time that the smoke wire could last. As wind speed increased, seeding

particles from the smoke wires mixed up more rapidly and produced a more uniformly

distributed environment, which made the vortex structure difficult to distinguish on the

video. At higher speeds, this happened too quickly to permit traversal of the whole model

through the light sheet before the image quality became unusable. Tests with different

wind speeds at the same angle of attack were therefore conducted to check the effect of

speed on vortex trajectory. Model deflection under different speeds was also checked to

determine the angle of attack correction required.

Light sheet set up

The light source for the flow visualization was a 30 watt copper vapor pulsed laser. The

beam from the laser was coupled into an optical fiber and sent to the sheet generator to

form a thin sheet. Initially, the light sheet was sent in from the upper window of the test

section. Later it was moved above the roof of the wind tunnel and pointed down so that the

sheet was symmetric about the model axis. Fig.3.3 shows the set up inside the tunnel.
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Five horizontalnichromewireswerestrungacrosstheupstreamendof thetestsection.

A cotton thread waswound looselyover eachwire, and paintedwith molten wax. A

poweramplifieroutsidethetestsectionallowedtheoperatorto controlthecurrentthrough

the wires andthusthesmokegeneration.The smokecould bemadeto last from several

secondsto severalminutesdependinguponthecurrentapplied.

R¢¢0rding and analysis

The flow images were captured by a Sony V-101 Hi8 camcorder placed inside the wind

tunnel and downstream of the model. The video output was transmitted to a Panasonic

AG1460 video recorder and recorded onto VHS tape. Before each test started, a piece of

cardboard marked with one inch square grid was held in the light sheet plane (with the laser

off). This was recorded on videotape with the camcorder fixed in position. After removing

the cardboard, the model was positioned so that the tip of the nose barely touched the laser

sheet plane.

The test results were analyzed on an Apple Macintosh II computer with a RasterOps 364

Colorboard frame grabber/display unit. Images were digitized onto Mac 1I through the

FrameGrabber software provided by RasterOps. A calibration grid was generated on the

computer with a drawing program (Deneba CANVAS 2.0), and compared with the

digitized image of the recorded grid to assure accuracy. The grid was then overlaid on each

digitized image, and the vortex core location was marked onto the grid. When a clear

vortex core could no longer be seen due to vortex bursting at aft stations of the model, the

approximate center of the vortical flow structure was marked. When all the marks were

collected, the CANVAS software and an in-house code were used to measure the distances

between the mark and the reference nosetip. The position of the cross-flow plane with

respect to the nosetip was measured using the time display on each digitized image, since

the model was moving at a constant speed. The (X, Y, Z) coordinates of each mark with

respect to the body axes were thus determined, and the trajectory of the center of the vortex

system was plotted.

3.4 Flow Field Spectral Analysis

A hot-film anemometer (TSI Model 1210-20 sensor) was used to study the spectra

of velocity fluctuations at different locations, with varying speeds and angles of attack.

The purpose of this study was to determine whether a dominant frequency exists above the
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wing or closeto thepossiblelocationof vertical tail, andhow it varieswith different test
conditions.

Data acquisition and processing

A single-film sensor was calibrated before the test to obtain the non-linear relation

between output voltage and freestream speed determined from the pitot-static probe.

During the test, the signal from the anemometer was sent through two channels into the 16-

bit high speed Preston analog-to-digital converter attached to the HP1000 A700 computer

system. The signal to the first channel was digitized without modification except for a low-

pass anti-aliasing filter and provided the full raw information. The same signal was also

routed through a T connector and high-pass filtered set at 0.1 Hz, so that the steady part

was discarded. The fluctuating part was then amplified at a desired gain so that the signal

level was optimized for accurate digitization. This signal was then low-pass f'dtered, before

sampling through second channel. Each sample block consisted of 512 samples, which

were converted to units of velocity using the full non-linear calibration results. At each

measuring point, 100 such sample blocks were used to find stable, averaged auto-spectra

of the velocity fluctuation, and the spectra were obtained with higher bandwidth to ensure

that high frequency phenomena were not being missed. It should be noted that the hot-film

sensor cannot distinguish contributions from different velocity components, and cannot

resolve flow reversal, if any.

3.5 Velocity Field Mau?ing

The LDV system used here is a 5 Watt Argon ion laser with frequency shifter and a 3-

axis computerized traverse. The traverse has a range of 48"x30"x30", sufficient to cover

the aircraft model without moving and realigning the LDV. Although the LDV is a two

component system, it was set up for one component measurement in this case. The

complexity involved in the alignment of two component system and the quality of the

signals made it far more efficient to measure one component at a time. The price paid is that

Reynolds' stresses and other joint statistics are out of reach. The U and W velocity

components were acquired by rotating the optics through 90 degrees as needed. However,

the third component, V, required a new design of the model support mechanism to roll the

model 90 degrees in order to complete the measurements. Positional accuracy in this

measurement process is essentially the same as the measuring volume size: approximately

0.1 mm at all points, assuming the traverse coordinates were linked to the body axis

coordinates and were checked before and after each run.
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Seedingparticlesweregeneratedby atomizingmineraloil downstream of the test

section. The data rate during the measurements was in the neighborhood of 3000 per

second for most of the measuring points. Three measuring planes were chosen to define

the flowfield in front of the strake-wing junction, over the wing and at the trailing edge of

the wing, where vertical tails might be located. Fig.3.4 shows the location and area

covered for these three measuring planes with respect to the model. An increment of 0.5

inch was used for the grid at station 2 and 3, while a finer increment of 0.25 inch was used

for grid at station 1. At each measuring point, 10000 data were sampled and averaged to

find the mean and rms (root-mean-square) values.

3.6 Static Pressure Measurement

The static pressure measurement over the wing surface can provide numerical codes

with validation data for loading predictions. It also can be correlated with flow visualization

and velocity data to portray a better picture of the flow field. Forty-one pressure taps were

installed on the model as shown in Fig.3.6. Each tap was connected to the 48-channel

Scanivalve switch with plastic Tygon tubing, and then the Barocell pressure transducer.

Leak checks were performed prior to the test to ensure correct pressure readings. An in-

house computer program was used to step through the scanivalve channels. At each

pressure tap, the software checked the readings and optimized the amplification on the

signla conditionere for optimal accuracy. Delays were built into this code to ensure that

readings were acquired only after the pneumatic switching transients had died down. One

hundred data blocks with 500 values per block were sampled and averaged to find the Cp

value at each pressure tap. These tests were repeated for 4 angles of attack (10,15,25,35

deg.) under 3 different freestream speeds (20,50,80 ft/sec).

4. RESULTS AND DISCUSSION

4.1 Laser Sheet Flow Visualization

Model defection

In order to ensure the accuracy of the model angle of attack, a model deflection test was

done prior to the flow visualization. Freestream speed was increased from 20 ft/sec to 100

ft/sec. The deflection of model at each speed was measured using the video system (with

the camera mounted outside the test section in this case). A single laser beam from the

Argon laser was placed at the tip of the nose before the tunnel was turned on, and was

moved using the stepper-motor traverse until it hit the nose again at a different speed.

Fig.4.1 shows the result from this test, which indicates that no deflection happened before
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50 ft/sec. Deflection increasednon-linearly to 0.6 inchesunder 100ft/sec, but is still

negligible.

Asymmetry

All of the flow images shown in this report are copies of 8-bit gray-scale printouts

from the original digitized color video. Much of the detail is lost in the process; the authors

will be glad to provide color prints, videotape, and/or digitized images on disk to interested

readers. Fig.4.2 shows vortex patterns above the wing, moving downstream. Contrary to

appearance, it should be remembered that we are seeing a section of smoke which started

out upstream as several horizontal wakes. Thus, if there were no disturbance at all, we

would expect to see five distinct, slightly-thick horizontal bands. The bright spot is laser

scattering off the black-painted model surface: these images were acquired with the light

coming through one of the upper test section windows. The patterns are seen to be

extremely asymmetric.

A variety of causes of the asymmetry were suspected and checked. Model yaw and

roll angle were rechecked several times; the test section windows were removed and put

back in; the probe traverse inside the test section was moved upstream and downstream

with the model fixed in position; the wing was checked, and the seams were faired over

with modeling wax. However, none of these resolved the problem. Finally, attention was

directed to the nose. Fig.4.3 shows the result: the asymmetry clearly originated at the nose

in the forebody vortex system. A minor asymmetry was observed at the very tip of the

nose, and this amplified downstream due to the mutual induction effects of the vortex

systems from the two sides. When the asymmetry at the nose was removed by fairing over

with modeling wax, things improved vastly. Fig.4.4 and 4.5 show the vortex patterns

over several different stations along the model after modification. Improvement can be

clearly seen.

Vortex trajectory

As shown in Fig.4.6, two vortices appeared from the forebody early on, located

on the upper side of the nose cone. At the beginning of the strake, two more vortices

formed. The forebody vortices were then gradually brought downward and incorporated

into the strake vortices over some Finite distance, typically six inches. At the strake-wing

junction, two more vortices joined the vortex system. At moderate angles of attack, a

merging of the wing and strake vortices was visible; we suspect that these effects are

present at other angles of attack as well Unlike the interaction of the strake and forebody
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vortices, where the strake vortices were dominant, the strake and wing vortices appeared to

mix together rather evenly. However, the movement of the wing vortices was quite

different from that of the forebody vortices. Maintaining a lower height above the model

than the strake vortices, the wing vortices gradually advanced inward from the leading edge

towards the strake vortices while slightly rising in height. At the instance of their

superposition, the wing vortex abruptly reached a height above the strake vortex and joined

with it. This occurrence took place over a distance of one inch and finished within roughly

three inches, which is notably less than the previous case (the strake/forebody interaction).

The final two vortices proceeded along the model continually growing in size and distance

from the body centerline. At moderate to high angles of attack, the vortices became burst at

a location of approximately 56% of the model length.

Figs.4.7 through 4.10 show the vortex trajectories at several angles of attack. At

10 deg., the core trajectory was marked from the strake, as the forebody vortices were no

longer visible. It is at this angle where visual presence of the wing-strake vortex transition

is available. Slight instability was noticed at 15 (leg. The forebody-strake vortex transition,

which is characterized by a drop in height and an increase in spanwise distance from the

centerline, was seen to be prolonged at this angle in comparison to the other angles. At 20

deg., spanwise symmetry was very good. Abruptness of the forebody-strake vortex

transition was noted as compared with 15 deg. Results at 25 deg. were very similar to

those at 20 deg. except that vortex transition occurred slightly later, which might be due to

the slight difference in freestream speed.

Spanwise symmetry of the vortex trajectories was compared for angles of 10,15,

and 20 degrees. Results are shown in Fig.4.11 through 4.13. The trajectories were

obtained totally independently. The averaged difference is found to be roughly 0.34 inch,

which is quite smaU.

Speed comparison test

Because of the difference in freestream speed chosen for the flow visualization and LDV

measurement, it is interesting to know the effect of different speeds on the vortex

trajectory. To avoid smoke generator burnout (which occurred several times), only three

stationary locations, where LDV measurements were performed, were chosen for the

comparison test. The information shown in Fig.4.14 represents a general trend seen in the

test. The figures have been curve fit and labeled according to their corresponding sides.

As shown in the figures, at higher freestream velocity the vortex core formed slightly closer
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to the centerline, and increased in spanwise distance at a faster rate than at lower speed.

The maximum difference was found to be approximately eight tenths of an inch. While the

difference in Z direction followed the same trend, only three tenths of an inch maximum

difference was noted.

Errgr analysis

Human factors, model setup, and computer hardware/software limitation were all included

in the analysis. The possible error in position of vortex core was then estimated as given

below:

_+ 0.25 inch from the nose to the forebody strake

+_0.4 inch error in each point beyond the forebody strakes to 56% of

the model

+ 1.2 inch error after 56% of the model

The last value is a function of burst vortices, which causes a greater error, because the

"center" of the vortical flow must now be located by the operator.

4.2 Laser Doppler Velocimetry

V_:ociH fi_Id

Figure 4.15 shows all 3 velocity components measured at three different planes.

Cross flow components V and W are presented in vector form with the axial component

delineated by flooded contours. These figures were made using TecPlot TM on an

Inte180386-class GATEWAY2000 computer, and printed on an HP laser printer. The body

boundary is indicated by a white circular strip at the lower right corner with the wing

surface at line z--0. It is clear that the vortical structure is the dominant feature at all the

stations. However, the characteristics at stations 1 and 2 are totally different from station

3. At station 1, which was located in front of the strake-wing junction, a tightly wound

vortex can be easily identified. The axial velocity inside the core region went up to almost

three times the freestream speed. Underneath the vortex core, few vectors are missing,

which are not because of surface scattering, but the extremely low data rate. From

observations of the Doppler signal on the oscilloscope during the test, very strong

fluctuations in the V component including change in direction had occurred. Flow

visualization results showed that the forebody vortex had been drawn downward and into

the strake vortex in this region. Yet, from the direction of velocity vectors in this region,

a secondary vortex with opposite sense of rotation may exist there, which could have

originated from the flow separation induced by the strong strake vortex. Therefore, the

flowfield around this station was actually very complicated. Moving downstream to station
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2, which was above the fore portion of the wing, the basic flow features were similar to

station 1. However, the vortical structure seems to be flattened and enlarged with slightly

decreased axial velocity, indicating that transition to vortex burst might already have begun

in front of this station. Interaction between the wing leading edge vortex and strake vortex

was active in this region. At station 3, located close to the trailing edge of the wing, the

flow features are very different. Burst of the strake-wing vortex is obvious. All the

vortices from different sources are no longer distinct, but form a large swirling vortical

flow structure. Reverse flow can now be observed in the center of this vortical flow.

Velocity variation at this station was much smoother than in the other two cases. One

thing common to all three stations is that they all had strong downflow close to the body

centerline, compared to the upflow at the wing leading edge. In addition, the center of the

vortical structure for all stations compares very well with the flow visualization results if

differences in freestream speed are taken into account.

Vorticity/helicity contours

Fig.4.16 shows the vorticity contours at different stations. Vortex sheet roll-up and the

formation of a concentrated vortex can be clearly seen at the fh'st two stations. A vortex

with an opposite sense of rotation is observed underneath the primary vortex. The strength

of the vortices at station 1 was roughly3 times greater than at station 2. Once the vortex

completely burst, as at station 3, the vortex strength dropped substantially.

A better way to visualize the vortex structure, as suggested by other researchers 4, is

using helicity contours. Helicity is defined as the dot product of vorticity and velocity.

Only the X component of vorticity was used in the calculation here. Fig.4.17 shows the

results from this calculation. A more lucid picture of the vortex system is obtained through

this method, especially for station 3, where the roll-up vortex sheet and the burst vortex can

now be distinguished without ambiguity. Flow reversal causes the sign change in the

central region. Such flow reversal in the burst core has been observed by Sellers et al6;

however, their measurements on the YF-17 showed flow reversal even in the time-

averaged results.

Root-mean-square velocity fluctuation

In order to understand the unsteadiness in the flowfield, which is not seen in

Fig.4.15, the root-mean-square velocity fuctuations of all three components are shown

separately in Fig.4.18, 4.19 and 4.20. Several interesting points can be observed: 1)

fluctuation levels were higher at the f'LrSt tWO stations, where the vortex strength was much
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higherandinteractionsbetweenvorticeswere sovigorous; 2) for the U component,the

regionof highestunsteadinessmatcheswell with theregionwherethevortexcoreor center

of thevortical structureis located;3) however,for theV andW components,this is no

longerthecase.At thefirst two stations,theregionof highestunsteadinessmovedinboard

and/or downward from the core/centerregion, which may be related to the severe

interactionsoccurring in thearea. On thecontrary,theregionof strongestfluctuationat

station3 movedoutboardand/orupward,whichmayberelatedto theweakervortexsheet

rolled up from theleadingedgeandthesecondaryvortexformedcloseto thewing surface

atthetip.

Histom-ams of velocity_ fluctuation

Since the strong strake-wing vortex burst upstream of the wing trailing edge, it is

interesting to see whether there was intermittent motion of the burst location. Histograms

of velocity components are, therefore, examined at three chosen positions at station 3,

which are underneath, at, and above the burst core region. Results are shown in

Fig.4.21., 4.22, and 4.23. Above the burst core, velocity fluctuations were very small, as

implied by the sharp, narrow peak in the histograms, except for that of the V component.

Referring to Fig.4.17c, this indicates possible moderate up/down motion of the rolled-up

vortex sheet surrounding the burst region, following the pulsating or intermittent motion of

the burst region. Inside the burst core region, velocity fluctuation was so high for all the

components, that the probability distribution is much broader and includes both positive

and negative velocity regions. For the axial component (U), there is even a 50-50 chance

for positive and negative velocity occurring. No distinct bimodality is observed.

However, vigorous motion of the burst core region surely existed in order to give such

velocity histograms. Below the burst region, a broader distribution is still seen for all

velocity components, but the flow direction is pretty consistent this time. Noticeable

bimodality can be observed in the histogram of the V component, indicating intermittent

flow separation above the wing surface.

4.3 Static Pressure Distribution

The chordwise static pressure distribution at six spanwise stations, as shown in

Fig.4.24, was measured. The purpose of these measurements is to correlate surface

pressure with other flow field data above the wing, and provide information for code

validation. A few gaps at the fit'st three spanwise stations can be seen in the figure, simply

due to the reinforced supporting plates underneath the wing, which left no space for

pressure taps. Tests were repeated for three freestream speeds and four angles of attack.
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Fig.4.25showstheresultsat different anglesof attackat 50 ft/sec. At the most

inboardstation,thepressuredistributionwasvery smoothfor low to moderateanglesof

attack. The suctionpeakdueto the strakevortex becamedistinctat high angleof attack,
andthe Cp level experienceda suddenjump, evenat positionstowardthe trailing edge.

This increase in Cp level toward the trailing edge at high angle of attack might not be

caused by the suction induced from the wing-strake vortex, since the vortex bursting

location will move upstream with increase of angle of attack. The true reason is not clear at

this time. The vortices formed beneath the primary vortex structure, e.g. those seen in the

vorticity contour plots, might play a role in this case. As we move to station 2 and 3, the

suction peak close to the leading edge, corresponding to the strake-wing vortex, increases

drastically for all angles of attack, and reaches a high value of 2.5 at 25 degrees.

Nevertheless, the increase in peak value for 35 degrees was smaller than other angles, and

it even became lower than at 15 degrees at station 3. This phenomenon proves that the

transition of vortex bursting happens earlier for 35 degrees. As the vortex burst,s the

pressure distribution experiences an abrupt change in slope, and dropped to a lower Cp

level. At stations 4 and 5, the suction peak is highest for 15 degrees. This says that the 25

degree case has now also entered the transition, but still shows a higher suction than the 35

degrees case. Overall, the suction lift produced by the vortex system over the wing surface

is highest at moderately high angles of attack (25 degrees in this case). Compared to the

case at low angle of attack (10 degrees), the lift generated at high angles is always higher

throughout the spanwise stations, even after experiencing vortex bursting.

Fig.4.26 shows the same results as in Fig.4.25 from a three-dimensional, global

point of view. For angles of attack of 10, 15, and 25 degrees, the pressure distribution

over the whole left wing surface experienced a sharp negative pressure valley induced by

the vortex system along the wing leading edge, which correlated well with the results from

flow visualization and velocity measurements. However, in the 35 degree case, the

distribution was smoother, but at a higher Cp level. This observation implies that at 35

degrees, vortex bursting probably occurred right after the strake-wing junction, and the

whole wing was covered under a big vortical flow structure.

The comparison between results under different freestream speeds at 25 degrees

angle of attack is presented in Fig.4.27. Except for a small difference noticed at the leading

edge locations of the most inboard spanwise station, the pressure distribution shows the

same trend for all the spanwise stations with a slight increase in Cp as speed goes up.
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This ensures that the speed effects on the flow field of the model were minimal for the

range we were interested in.

4.4 Hot-film Anemometry

A hot-film anemometer was used to obtain spectral information on the model

flowfield at the stations shown in Fig.4.28. Measurements under different flow speeds

and angles of attack were performed for comparison purposes.

Velocity s_oectra

Fig.4.29 shows velocity spectra obtained at different heights above station 1 at a

freestream speed of 50 ft/sec. Starting from 0.25" off the wing surface, a sharp peak at

about 48 Hz can be easily identified with a spectral density level at around 1.5. As the

sensor was moved up with one inch increments, several peaks in the neighborhood of 50

Hz began to show up. The highest peak shifted between 40-60 Hz with similar spectral

level, despite the presence of a spike at an extremely low frequency. Once it reached and

went above the height of 5.25", the peak centered around 50 Hz reappeared, and the

spectral level dropped quickly from 1.5 to 0.011. After referring to the velocity data, it is

not surprising to notice that the region with multiple peaks is coincident with the region

where the burst vortex was located, and higher velocity fluctuation on all three components

was present.

As we move upstream to station 6, at the fore portion of the wing, a broadband

spectrum is seen in Fig4.30, with a peak centered roughly around 150 Hz. The height of

this measuring point was 3.25" above the surface, which is right over the concentrated

vortex at this station. Moving further upstream to station 4, which was right after the

strake-wing junction, once again we have a broadband spectrum as shown in Fig.4.31.

However, the peak frequency can no longer be distinguished. Based on the observations

mentioned above, it appears that a clear, dominant peak frequency can only be easily

identified at locations after the vortex bursting, where no concentrated vortex exists in the

flowfield. Otherwise, the vigorous interaction and merging between vortices causes the

flow field to become so turbulent that no particular peak frequency can be seen.

Variation of the dominant frequency with freestream shed

Because of the existence of a well defined dominant frequency at station 1 above the

burst vortex, it is interesting to see how this frequency will vary with changes in

freestream speed. Fig.4.32 shows the velocity spectrum at the same measuring point with
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freestreamspeedsvaryingfrom 20 ft/secto 100ft/sec. At low speeds,avery sharppeakat
the dominant frequency can be picked up. As speedincreases,the peak broadens

somewhat,but it is still possibleto choosethecenteredfrequency. All the peaks chosen

are plotted against the freestream speed, and are shown in Fig.4.33. The result indicates

that a fairly linear relationship exists between the dominant frequency and freestream speed,

as seen in previous work 1,2.

Variation of dominant frequency with angle of attack

Fig.4.34 shows the velocity spectrum measured at a fixed height above the wing

surface at station 1 at different angles of attack. Except for the case of 25 degrees, at which

the dominant frequency can be easily identified, multiple peaks are found in all the other

cases. The highest peak frequency can still be roughly chosen, and fails in the range of 30-

50 Hz. The spectral density level increases rapidly as the angle of attack increases.

Following the interpretation mentioned in the section on "velocity spectra", it can be said

that the dominant frequency stays roughly the same with change in angle of attack, since

the measuring point actually moved from 2-3" above the burst vortex region to probably the

center of the region as the angle of attack went up. This does not agree with previous data,

where the dominant frequency was seen to drop as angle of attack increased I ;z.

Spectral analysis with LDV signal

Since the hot-film sensor cannot differentiate the flow direction, the spectral information

thus obtained will include the contribution from all the velocity components. Therefore,

spectral analysis with the analog voltage output in time domain from the LDV counter

processor was tried. The digital data coming from the LDV was sent into a 12-bit D/A

converter. The result is a voltage value which stayed constant until changed by the next data

value, and thus the signal takes on the appearance of a series of "steps". If the data rate is

high enough, this signal can be passed through a low-pass filter, yielding a reliable

turbulence signal. This technique requires data rate that is high enough for the sampling rate

chosen, which did not pose any problem, since we had data rates on the order of a few

thousand per second, while the frequency range of interest was below 100 Hz. Hence,

success was achieved. Fig.4.35 shows the results measured above the burst vortex at

station 1. The dominant frequency is found to be around 45-50 Hz, with a secondary peak

located at about 15-20 Hz. The W velocity component has the highest spectral density

level, which is 40 times over the U component, and 12 times over the V component, and

the level of the secondary peak is about two third of the primary peak. Fig.4.36 shows the

results measured at the same station but inside the burst region. The same dominant
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frequency is identified from all three components. However, the spectral density level is

now more comparable between components, but is still lower than at the previous location°

From the last two figures, it is shown that the LDV signal can be used for spectral analysis

and gives the correct dominant frequency, component by component without ambiguity°

However, it is less sensitive than the hot-film anemometer to the smaller turbulent structure

in the flow field, which in some cases may be desirable.

5. CONCLUSIONS

1. The flow field above a generic wing/body model at high angle of attack has been

extensively documented using laser sheet flow visualization, laser velocimetry, hot-film

anemometry and static pressure measurements. As a result, a multi-faceted data set is now

available for the development of computational methods on a configuration of simple

geometry°

2. The vortices from the forebody are seen to merge into the concentrated strake vortices,

which in turn merge with the wing leading edge vortices. This process is visible on the

videotape at low angle of attack. Mutual induction of the vortex systems is also visible, so

that the vortex system above the wing actually consists of three difference vortices

revolving around each other.

3. The symmetry of the vortex system is very sensitive to the shape at the nosetip. Any

small asymmetry at the nose is amplified dramatically due to the induction effect between

the vortices on the two sides. The asymmetric systems remain steady under steady model

attitude. After the nose was faired by trial and error using modeling wax, symmetry was

improved drastically.

4. At moderate to high angles of attack, the vortex system over the wing was found to burst

at location roughly 56% of the model length.

5. Three components of velocity were measured at 3 stations, which were ahead of the

strake-wing junction, fore part of the wing and close to the wing trailing edge. The vortical

structure is the dominant feature at all stations. However, at station 1, a strong

concentrated strake vortex formed, with axial velocity inside the core going up to 3 times

the freestream speed. At station 2, the vortical structure appeared flattened and enlarged

with slightly decrease in axial velocity, indicating the onset of transition to vortex bursting.

At station 3, well past the vortex burst location, only a large vortical structure existed with

flow reversal noted in the center region.

6. The velocity fluctuation was examined using the contour plots of root-mean-square

(rms) velocity for all 3 components. High fluctuation levels were found at the first two
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stations,wherevortex strength was much higher and interactions between vortices were so

vigorous.

7. No clear bimodality can be seen in the velocity histograms. However, the results do

suggest strong unsteady motion of the burst core region at the station close to the trailing of

the wing.

8. A sharp negative pressure valley induced by the vortex system over the wing can be seen

along the leading edge of the wing in the surface pressure distribution, which correlated

well with other data obtained from flow visualization and LDV measurements. At much

higher angles of attack, the pressure distribution became more smooth, but still with higher

Cp level.

9. Upon vortex bursting, a sharp change of slope in chordwise pressure distribution

occurred with reduced Cp level. However, at high angle of attack, even after the vortex

burst happened, the suction experienced was still higher than that produced under unburst

condition at low angle of attack.

10. Velocity spectra measured at the station close to wing trailing edge show that a

dominant frequency existed in the flow field. The value of this frequency changes slightly

in a narrow range as the measuring point moved up and went through the burst core region.

11. As the measuring point moved upstream, the dominant frequency increased. However,

the spectrum shows more broadband turbulence, with the peak frequency getting harder

and harder to identify.

12. The dominant frequency found at the trailing edge station scales linearly with

freestream speed at fixed angle of attack.

13. No clear change in peak frequency was found with change in model angle of attack,

besides the change in shape of the spectrum.

14. The analog signal from LDV counter processor was used successfully in spectral

analysis, and compared well with the spectrum obtained from hot-film anemometer. This

provides the ability to do the spectral analysis component by component without directional

ambiguity.
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Fig.3.1 Geometry and dimensions of the generic wing/body model
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Fig.4.4 Forebody vortex systems after modification to nose
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Fig o4.5 Vortex patterns over the wing and aft-body after nose

modification
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Forebody - Strake - Body Vortices Superposition

Front View
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a) Formation of body vortices
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Arrows represent circulation strength
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Fig.4.6 Sketch of vortex systems and their superposition
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o_=25 o



0.02

y=4.25", z=7.25", X=36.19"

fNQ=700 Hz, fLO=550 Hz
Uoo=60 ft/sec

0.01

0.00
0 100 200 300 400 500 600 700

f (Hz)

Fig.4.32e

o_=25o

Velocity spectrum measured at HW station 1, z=7.25", Uoo=60 ft/sec,
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Velocity spectrum measured at HW station 1, z=7.25", U_,=100 ft/sec,
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Fig.4.35a Velocity spectrum obtained from LDV signal at HW station 1,

z=6.25", a=25 °, U-component
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Fig.4.35b Velocity spectrum obtained from LDV signal at HW station 1,

z=6.25", a=25 °, V-component
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Fig.4.35c Velocity spectrum obtained from LDV signal at HW station 1,

z=6.25", (x=25 °, W-component
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Fig.4.36a Velocity spectrum obtained from LDV signal at HW station 1,

z=2.25", a=25 °, U-component
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Fig°4.36b Velocity spectrum obtained from LDV signal at HW station 1,

z=2.25", c_=25°, V-component
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Fig.4.36c Velocity spectrum obtained from LDV signal at HW station 1,

z=2.25", a=25 °, W-component




